Publications

Quint M, Delker C, Franklin K, Wigge P, Halliday K, van Zanten M. Molecular and genetic control of plant thermomorphogenesis. Review. Nature Plants (in press).

Yang D, Seaton DD, Krahmer J, Halliday KJ. Photoreceptor effects on plant biomass, resource allocation and metabolic state. PNAS 2016 Jun 21. pii: 201601309.

Flis A, Fernández AP, Zielinski T, Mengin V, Sulpice R, Stratford K, Hume A, Pokhilko A, Southern MM, Seaton DD, McWatters HG, Stitt M, Halliday KJ, Millar AJ. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biol. 2015 5(10).

Voß U, Wilson MH, Kenobi K, Gould PD, Robertson FC, Peer WA, Lucas M, Swarup K, Casimiro I, Holman TJ, Wells DM, Péret B, Goh T, Fukaki H, Hodgman TC, Laplaze L, Halliday KJ, Ljung K, Murphy AS, Hall AJ, Webb AA, Bennett MJ. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat Commun. 2015 6:7641.

Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes-Esquivel N, Halliday KJ, Martinez-García JF, Rodriguez-Concepcion M. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors. Plant Physiol. 2015 169(3):1584-94.

Seaton* DD, Smith* RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ,  Halliday KJ. Linked circadian outputs control plant growth and development in response to photoperiod and temperature. Mol. Syst. Biol. 2015 11(1):776.

Arabidopsis cell expansion is controlled by a photothermal switch. Johansson H, Jones HJ, Foreman J, Hemsted JR, Stewart K, Grima R, Halliday KJ. Nat Commun. 2014 5:4848.

Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P, Stitt M, Williams M, Muetzelfeldt R, Halliday KJ, Millar AJ. Proc Natl Acad Sci U S A. 2014 111(39):E4127-36.

Mathematical models light up plant signaling. Chew YH, Smith RW, Jones HJ, Seaton DD, Grima R, Halliday KJ. Plant Cell. 2014 26(1):5-20.

Temperature and light signal integration. McWatters HG, Toledo-Ortiz G, and Halliday KJ. Book, Temperature and Plant Development. Eds: Franklin and Wigge, Feb. 2014, ISBN: 978-1-118-30820-2.

High Expression of OSMOTICALLY RESPONSIVE GENES 1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis.Macgregor DR, Gould P, Foreman J, Griffiths J, Bird S, Page R, Stewart K, Steel G, Young J, Paszkiewicz K, Millar AJ, Halliday KJ, Hall AJ, Penfield S. Plant Cell. 2013, Nov 19.

Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock. Keily J, MacGregor DR, Smith RW, Millar AJ, Halliday KJ, Penfield S. Plant J. 2013, 76(2):247-57.

Inference on periodicity of circadian time series. Costa MJ, Finkenstädt B, Roche V, Lévi F, Gould PD, Foreman J, Halliday K, Hall A, Rand DA. Biostatistics. 2013, 14(4):792-806.

Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures. Gould PD, Ugarte N, Domijan M, Costa M, Foreman J, Macgregor D, Rose K, Griffiths J, Millar AJ, Finkenstädt B, Penfield S, Rand DA, Halliday KJ, Hall AJ. Mol Syst Biol. 2013;9:650.

Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.Vaistij FE, Gan Y, Penfield S, Gilday AD, Dave A, He Z, Josse EM, Choi G, Halliday KJ, Graham IA. Proc Natl Acad Sci U S A. 2013, 110(26):10866-71.

The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ. Mol Syst Biol. 2012, 8:574.

Inference on periodicity of circadian time series. Costa MJ, Finkenstädt B, Roche V, Lévi F, Gould PD, Foreman J, Halliday K, Hall A, Rand DA.Biostatistics. 2013, 14(4):792-806.

Stochastic properties of the plant circadian clock. Guerriero ML, Pokhiko A, Fernández AP, Halliday KJ, Millar AJ, Hillston J. 2011, J R Soc Interface. 2012, 9(69):744-56

A DELLA in disguise: SPATULA restrains the growth of the developing Arabidopsis seedling
Josse EM, Gan Y, Bou-Torrent J, Stewart KL, Gilday AD, Jeffree CE, Vaistij FE, Martínez-García JF, Nagy F, Graham IA, Halliday KJ. Plant Cell. 2011 (4):1337-51.

Light receptor action is critical for maintaining plant biomass at warm ambient temperatures.Foreman J, Johansson H, Hornitschek P, Josse EM, Fankhauser C, Halliday KJ. Plant J. 2011 65(3):441-52.

Plant Development: Light Exposure Directs Meristem Fate. Griffiths J and Halliday KJ. Current Biology. 2011, 21(19):R817-9.

Fruit Development: New Directions for an Old Pathway Moran CN and Halliday KJ, Current Biology 2010, 20(24):R1081-3.

A stress-free walk from Arabidopsis to crops Chew YH and Halliday KJ. Current Opinion in Biotechnology. 2011, 22(2):281-6.

SPATULA Links Daytime Temperature and Plant Growth Rate Sidaway-Lee K, Josse EM, Brown A, Gan Y, Halliday KJ, Graham IA. and Penfield S, Current Biology. 2010, 20(16):1493-7.

Integration of light and auxin signaling. Halliday KJ, Martínez-García JF, Josse EM.Cold Spring Harb Perspect Biol. 2009 (6):a001586.

Prediction of photoperiodic regulators from quantitative gene circuit models. Salazar JD, Saithong T, Brown PE, Foreman J, Locke JC, Halliday KJ, Carré IA, Rand DA, Millar AJ. Cell. 2009, 139(6):1170-9.

A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy Penfield S, Josse E M, Halliday K J. Plant Mol Biol. 2010, 73(1-2):89-95

Skotomorphogenesis: the dark side of light signalling. Josse EM, Halliday KJ. Curr Biol. Curr Biol. 2008, 18(24):R1144-6.

Paths through the phytochrome network. Josse EM, Foreman J, Halliday KJ. Plant Cell Environ. 2008 (5):667-78. Epub 2008. Review. PMID: 18266901 [PubMed - indexed for MEDLINE]

Phytochrome coordinates Arabidopsis shoot and root development. Salisbury FJ, Hall A, Grierson CS, Halliday KJ. Plant J. 2007 May 50(3):429-38.

DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Penfield S, Gilday AD, Halliday KJ, Graham IA. Curr Biol. 2006; 16(23):2366-70.

Cold and light control seed germination through the bHLH transcription factor SPATULA.Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA. Curr Biol. 2005, 15(22):1998-2006.

The highs and lows of plant life: temperature and light interactions in development. Heggie L, Halliday KJ. Int J Dev Biol. 2005, 49(5-6):675-87.

Plant hormones: the interplay of brassinosteroids and auxin. Halliday KJ. Curr Biol. 2004, 14(23):R1008-10. Review.

The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ. Plant Cell. 2003, (11):2719-29.

Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses.
Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ. Plant J. 2003, 35(1):57-70.

Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Halliday KJ, Whitelam GC. Plant Physiol. 2003, 131(4):1913-20.

Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC. Plant Physiol. 2003, 131(3):1340-6.

Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC. Plant J. 2003, 33(5):875-85.

SRL1: a new locus specific to the phyB-signaling pathway in Arabidopsis. Huq E, Kang Y, Halliday KJ, Qin M, Quail PH. Plant J. 2000, 23(4):461-70. 

poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Halliday KJ, Hudson M, Ni M, Qin M, Quail PH. Proc Natl Acad Sci U S A. 1999, 96(10):5832-7. 

Photomophogenesis: Phytochrome takes a partner! Whitelam GC, Halliday KJ. Curr Biol. 1999, 9(6):R225-7. Review.

Overexpression of rice phytochrome A partially complements phytochrome B deficiency in Arabidopsis. Halliday KJ, Bolle C, Chua NH, Whitelam GC. Planta. 1999, 207(3):401-9.

Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Halliday KJ, Thomas B, Whitelam GC. Plant J. 1997, 12(5):1079-90. 

The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Devlin PF, Halliday KJ, Harberd NP, Whitelam GC. Plant J. 1996, 10(6):1127-34.

Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Halliday KJ, Koornneef M, Whitelam GC. Plant Physiol. 1994, 104(4):1311-1315. 

BOOK

Whitelam, Garry C. / Halliday, Karen J. (eds.)
Annual Plant Reviews, Volume 30, Light and Plant Development. Edition February 2007

ISBN 978-1-4051-4538-1 - John Wiley & Sons

 

Detailed description
Living organisms are subject to fluctuating environmental conditions. Whereas most animals are able to move away from unfavourable conditions, plants are sessile and so must cope with whatever comes their way. Of all the environmental cues that challenge the developing plant, light can probably be considered to be the most important. In addition to its key role in plant metabolism, and hence almost all life on Earth, where it drives the process of photosynthesis, light energy also acts to regulate plant growth and development. Light quantity, quality, direction and diurnal and seasonal duration regulate processes from germination, through seedling establishment to the architecture of the mature plant and the transition to reproductive development. These developmental responses of plants to light constitute photomorphogenesis.

This volume is designed to provide the reader with state-of-the-art accounts of our current knowledge of the major classes of higher plant regulatory photoreceptors and the signal transduction networks that comprise plant developmental photobiology. Consideration is also given to the ways in which knowledge of plant photoreceptors and their signalling networks can be exploited, for instance to improve the quality and productivity of commercially-grown plants. The book is directed at researchers and professionals working in plant molecular biology, plant physiology and plant biochemistry.